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ABSTRACT

This paper considers the solution of hyperbolic systems of
conservation laws on discontinuous grids. In particular, we consider what
happens to conscrvation at grid interfaces. A procedure is presented to
derive conservative difference approximations at the grid interfaces for two
dimensional grids which overlap in an arbitrary configuration. The same
procedures are applied to compute interface formulas for grids which are
refined in space and/or time, and for continuous grids where a switch in
the scheme causes the discontinuity.
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1. Introduction

This paper considers the solution of hyperbolic systems of conservation laws on
discontinuous grids. The discontinuity in the grid can be due to the overlapping of two
different mesh systems, or to one grid which undergoes an abrupt mesh refinement in
spacc and/or time. Some of our results include the case where the discontinuity is due to
switching numerical schemes on the same grid, rather than the switching of the grids
themselves. In either case, since the solution is discontinuous, some analog to
conservative differencing is necded at the grid interface. Following Lax and Wendroff
[1960] we give interface conditions that guarantee that if the solution converges, it

converges to a weak solution of the equatiors, and thus insures correct jump conditions
for shocks.

Computations with internal interfaces are becoming more common from two sources.
First, many large scalc scientific computations, for example in transonic flow, are
modeling more and more complex geometries in two and three space dimensions. As the
configurations that can be modeled become more complex, so does the grid generation
problem. It is very difficult to generate one smooth body-fitted coordinate transformation
around a general possibly multiply connected domain. To simplify this problem, it is
becoming more common to use several grids at once, each in a different coordinate system
(Boppe, [1980]; Atta, [1981]; Benek, Steger and Dougherty, [1983]). Each part of the
domain will still have a body fitted grid, but now the component grids will in general
overlap each other in an irregular fashion, (for example see figure 1.1). Thus, additional
boundary conditions will be needed for those grids with a boundary that is interior to the
problem domain.

The second source of these interface problems comes from the use of adaptive
techniques, where a grid is abruptly refined in space and time. In this approach, used by
(Bolstad [1982]; Gropp [1980]; Berger and Oliger [1984]; Berger and Jameson [1983]),
rectangular fine grids are superimposed on an underlying coarse grid in those regions
where the solution accuracy is inadequate. Thus, this can be regarded as a special case of
the independent grids described above. In addition to being refined in space, the grids are
refined in time as well, so that smaller steps are taken on the fine grids. This is done so0
that the mesh ratio Ap,, = Nigarses 80 the same integrator is stable on each grid. The
small timestep does not have to be applied on the entire grid. (See figure 2.2 for an
illustration of this.) Similar ideas have been proposed in the multigrid literature, for
example sec Brandt [1981] and McCormick [1984].

Both multiple component grids and mesh refinement will be even mere necessary in
3D calculations. For difficult problems involving for example wings, nacelles, engines,
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Figure 1.1 Independently generated component grids for flow in a channel around
an obstacle.

canards, etc., if one insists on using one global coordinate system for the grid
discretization, we believe that some type of local refinement will be necessary to make up
for the extreme grid skewness and uncven resolution that these global grids can’t avoid.
Thus, there will still be an interface problem.

In both of the cases described above, it is important to use conservative interface
procedures to guarantec the correct shock location for shocks passing through grid
boundaries, and to insure that artificial shocks are not generated at grid interfaces. We
give a general procedure for deriving conservative interface conditions that give weak
solutions to the differential equation if they converge. The method gives formulaes of
arbitrary order of accuracy, but the higher order ones may be unstable. In some cases,
the resulting formulas are not new, although the derivation is. In other cases, the
different approach leads to new formulas, for example in the case of overlapping grid
systems, which are not immediately equivalent to a finite volume approach for
determining fluxes across the boundary. Some of our results are still preliminary, in that
numerical experiments have not yet been done.

In the rest of this section we review some basic facts about conservation and set
notation for the rest of the paper. Our basic approach follows from a precise definition of
conservation on irregular grids (by which we mean overlapping component grids or grids
with an abrupt refinement in space or time). In section 2 we use this approach to derive
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interface conditions for an interface due to an abrupt refinement in space, then space and
time. In section 3, we formalize the approach illustrated in section 2, and discuuss the
order of accuracy. In scction 4 we look at the casc of overlapping meshes in one space
dimension, as a prelude to the more difficult problems in two dimensions in section 5. We
present an algorithm for determining conservative interface conditions for grids which
intersect in an arbitrary way in two dimensions. However, in the general case, there are
many open questions remaining which will be important for numerical computations using
independently generated component grids.

Consider the solution of a hyperbolic system of conservation laws
utf(u), = 0, (1.1)
u(x,t=0) = ug(x).

In cases where the solution is discontinuous, a classical solution by definition no longer
exists. Instead, u is a weak solution if

Jfud, + f(u)d, dx dt + fugx)d(x) dx = 0, (12)

for any smooth test function ¢(x,f) with compact support. In problems with a
discontinuity in the solution, the speed s of the discontinuity is given by the Rankine
Hugoniot condition,

s[u] = m’ (1.3)
where the brackets denote the jump in the quantity at the discontinuity. This condition
follows directly from (1.2), see Lax [1972]. It is well known that the numerical
computation of a discontinuous solution of (1.1) requires the numerical scheme to be in

conservation form. An explicit finite difference approximation to (1.1) is in conservation
form if it can be written

\;}-"+l = Q(V}'.'_’,, T 9"7+q+]) (1.4)
g i

where g is a Lipschitz continuous numerical flux function and A, is the forward
difference operator. Consistency requires that g(v,v,...,v) = f(v).

The question of conservation when switching between two different grids or
numerical schemes has been considered by several authors. Warming and Beam [1976]
derived transition operators for switching conservatively between MacCormack’s method
and a second order upwind scheme. Hessenius and Pulliam [1982] applied this transition
operator approach to derive so-called zonal interface conditions, however, with a
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significant loss of accuracy at the zonal interfaces. Rai [1984] has developed conservative
zonal interface conditions for zonal grids which share a common grid line, and has
beautiful calculations demonstrating the shock capturing ability of zonal grids with a
discontinuity crossing zones. The derivation presented here contains his algorithm as a
special case. The need for conservative grid interfaces is illustrated by Benek, Steger, and
Dougherty [1983]. Their transonic flow calculations use grids in two coordinate systems,
one around an airfoil and one smaller embedded grid around a flap. The computed
shock is very distorted as it passes through the grid interface.

Finally, Osher and Sanders [1984] have conservative interface equations for a mesh
which is refined by an integer r in time. However, their scheme requires the savinga of r

intermediate values in time at the boundary of the fine grid. Our approach (or a variant
of theirs) yields conditions without this drawback, and so are easier to implement.

The approach we take is based upon the direct numerical approximation of (1.2),
and the proof that a convergent conservation form scheme converges to a weak solution.
We repeat the main argument of the Lax and Wendroff proof to set the stage for the
further development, which also uscs summation by parts. Take the conservation form
scheme (1.4), multiply by the test function ¢}, Ax, and At, and sum over all grid points
J, and n=0, giving

> 20 il ¢;-' AtAx (1.5)
jn=

— _22 8(Vj—P+1,Vj+q+])—S(Vj—p,vj+q)
J n=0 Ax

7 ArAx.

Applying summation by parts to the left sidde of (1.5) gives

+1- o] 1-4])
s34 ’¢;'ArAx 53 T80 pax - 3vpe0as,

7 nz0 7 n=1 At ]

which converges to [[—uddx dt — fug(x)b(x)dx under suitable hypotheses as
Ax,At-0. A similar summation is done on the right hand side of (1.5).

Another way to say the above is that the integral in definition (1.2) is being
approximated by the trapezoid rule,

fudx = gu, h + O(h?). (1.6)

Instead of exactly conserving the quantity /(f) = fu(x,t)dx, except for the flux at the
boundaries of the domain, the discrete approximation

"= hu Qa.7
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is conserved exactly by the numerical scheme. It is this integral approximation (1.6) and

numerically conserved quantity (1.7) that we generalize when considering conservation on
irregular grids.

2 Interfaces Due to an Abrupt Mesh Refinement

To develop the procedure, we first consider the very simple case of an abrupt mesh
refinement in space. We will show how to derive a class of conservative interface
conditions that give weak solutions to the differential equation if they converge.

For ease of presentation, we consider the casc of mesh refinement by a factor of 2.
Assume the interface between the course and fine grids is located at x = 0, where we use
the notation of figure 2.1.

Figure 2.1 Interface for mesh refinement in space only.

Assume on either side of the interface we integrate using a scheme in conservation form
with a 3 point stencil. The scheme is

(g(x x+h)—g(x—hx)

- x=h
v(x,:+k2—v(x,r) _ i(m+2h)2is(x‘2"»") xS —2h @.1)
Q(-2h,0,h) x=0

The goal is to determine the unknown function Q for the interface equation for v(x=0,1)
in such a way that conservation is maintained.
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Following Lax and Wendroff, we multiply (2.1) by a smooth test function ¢(x,f)
and the mesh widths in time and spacc. Summation by parts will again put the
differences on ¢, which should converge to the derivatives of ¢, and the sums to
integrals in space and time. However, in this case there will be boundary terms arising
from the summation by parts at the interface, where the mesh width changes. Q can then
be determined by requiring that these boundary terms all vanish up to terms of order A.
In addition, there is some flexibility as to which discrete integral approximation to use,
although any integration formula will give a consistent boundary approximation. For the
summation in space, for example, we can consider the one-sided approximation to the
integral

f vix,)dx= 3 v(x,0)2h + 3 v(x,0)h, (2.2)

- xs—2h x=0

or the more accurate trapezoid rule,

J v(xdx = 3 v(x,02h + S v(x,0h + %’lv(o,t). 2.3)

=% x=—2h xzh
If the interface formula Q is derived using (2.2), then the solution will exactly conserve at
each time step the discrete approximation on the right hand side of (2.2), and similarly if
(2.3) is used.
Suppose we multiply (2.1) by ¢, and use the rule (2.2) to form the sums. The
interesting thing is what happens to the right hand side, which is

» L(xlx+2h)—g(x-2h,x).¢(x")2hk +

2.4
= 2h 29

) g(x,x+h);x(x-h,x) & (x,£)hk

+ Q(—2h,0,h)¢(0,t)l;k =

xZh

S 8(ex+24) “"""““{,f"*””‘)]m + g(-20,08(-20)  @5)

x<=2h

+ 3 glrrh) | A= ebthi) ]hk )

xzh
+ Q(—2h,0,h)$(0,¢) hk.

The two sums in (2.5) already form an O(h) approximation to the integral in space. We
must have that the three terms remaining cancel up to terms of order A, or
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hQ(~2h,0,k)b(0,6) + g(—2h,0)b(—2h,1)—g(0,h)b(h,1) = O(h). (2.6)
Expanding the test function ¢(x,t) around x=0 gives

[he + s-20.0) - s0m)]00) = 0h). @n
The interface condition Q is therefore determined by requiring
hQ + g(—2h,0)-g(0,h) = 0. (2.8)

For example, using the numerical flux function g for the Law-Wendroff difference
scheme,

8(rjo1,)) = f(vj—1)2+f(vj) + %A [rtlz_hl](f(vj)_f(vj_l)),

where the Jacobian A = -g'&, the resulting interface approximation is

v(0,1+k) = v(0,0) + %(f(h)—f(—Zh)) 2.9)

+ 1‘21 A(%)(f(h)—f(O))—M(-h)(f(o)‘f(‘z"))]-

This is not a very accurate approximation, however. For smooth solutions the local
truncation error is only O(h). However, since the scheme is only applied at one point we
can still get convergence (in the linear case) if the combined scheme is GKS-stable, since
the method applied everywhere else is at least O(kh) (Gustafsson, [1975]).

If however, the more accurate integral approximation (2.3) is used, thc same
procedure yields the interface approximation

3h
= @(=2h,0,k) = g(0,h) — g(—24,0). (2.10)
For the Lax-Wendroff scheme this gives the interface equation

v(0,1+k) = v(0,0) + %(f(h)—f(—?):)) @.11)

A —

This is a more accurate approximation, with local truncation error O(kh). Either of these
interface conditions could have been easily derived using a finite volume approach, and
balancing the flux at the interface. However, this formalism will help in more
complicated situations.
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For the case of mesh refinement in time and space, we again consider the simplest
case of refinement by a factor of 2, using the notation of figure 2.2. Interface equations
arc needed for v§2 and v{ so that global conservation is maintained.

v_2 Vl V2

Figure 2.2 Interfacc for mesh refincment in space and time.

Again assuming a three point stencil, the scheme is

ﬂx,ﬁkz)k—v(xlt) _ 8(1,14'2")2"'}(""2"1") x<0 (2.15)
vittk)-v(xg) _ glaxth)-gl-hx) g
k h
v(O,t+kZ—v(0,t) -0
v(0,1+2k)-v(0,0+k) R
: =

Again, all equations in (2.15) are multiplied by ¢(x,f) and either 2h 2k for j<O0,hk for

j>0, or 37" k for j=0, using the trapezoid rule. When summation by parts is applied to

the terms with the differencing in space, each sum will produce a boundary term. The
requirement that the boundary terms vanish to order h gives (dropping the summation in
time)

123k

271267 - 8120113261 + ROE2Z + 04p3 =~ O(h).

This can be accomplished by defining

R = o , (2.16)
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and

gl — &L1n
§£ 2
2

These interface conditions can be shown to be first order accurate, with local truncation

error O(kh). For mesh refinement in time and space by an arbitrary integer r, the
formulas generalize immediately, and have the interesting stencil shown in figure 2.3.

Q:

AN

/

Figure 2.3 Interface stencil for mesh refinement in time and space.

It is difficult to prove stability of the interface equations (2.16). For mesh
refinement in space only, the conservative interface conditions (2.11) using Lax-
Wendroff to advance the fine and coarse grids can be shown to be stable in the sense of
Gustaffson, Kreiss and Sundstrom [1972] (Berger, [1982]). In numerical experiments,
the interface equations for mesh refinement in time and space are stable, and give good
results when either a discontinuity or rarcfaction wave passes through the interface.

Unfortunately, in the non-dissipative case, more care is required to develop stable
and conservative interface equations. Consider a mesh refined in space only by a factor
of 2, and use cell-centered variables as indicated in figure 2.4. We will consider the semi-
discrete version of 4, = u, with central differencing on either side of the interface. One
possibility for conservation across the line x = 0 is given by the equations

Uj+1™ Uj—1
Uy = '2—4—,;‘L— 2.17)
_ 1 | Gyatu)  Gytuyey)
2h 2 2




-11-

v = AL ”;hv =1 1
N | (vo+v1) _ (uotuy | _ votvi—ug—uy
= h 2 2 2h

votv
In (2.17), we use u; = 02 1 This set of equations supports a standing oscillation on

the fine grid, emanating from the interface, with no such wave on the coarse grid. Thus,

energy is radiating from the interface without any incident waves, and so the interface
given is unstable.

Figure 2.4 Mesh refinement in space with cell-centered variables.

An alternate approach is to interpolate for v_; using ug and sy of the coarse grid,
and use the interface equations

V] — V4

Vo = T (2.18)

1 | (vo1tvg) (M- + 49

T 2 2

This interface condition does not excite the unstable oscillatory mode in (2.17). The two
dimensional nonlinear analog of equation (2.18) has been tested by computing steady
transonic flow with the Euler equations, (Berger and Jameson, [1983]).

3 Discrete Approximations to Integrals

In this section we formalize the approach illustrated in the examples in section 2.
We assume a computation is done using one grid, with an interface at the point x = 0.
The interface can be duc to a mesh refinement, or to using one numerical scheme on the
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left, and a different one on the right. A class of conservative interface formulas will be
derived at the point x = 0.

The goal is to obtain a weak solution of (1.2). By approximating the integral using a
general quadrature formula, the interface equation will again be determined so that the
discrete formulas is exactly conserved at each time step. To do this, we first quote the
following lemma from (Mock and Lax, [1978]). They state

Lemma: Let f be any C” function on R . with bounded support. Given any positive integer
Vv, there exists a quadrature formula accurate to order v of the form

_gf(X) dx = h Xg' w; f(jk) + O(hY),

where the weighis depend on v, but w; = 1 for j=v .

The weights w; are derived from the Euler MacLaurin summation formula. An
integration rule for the whole domain is derived by putting two one-sided formulas
together. Since the weights are constant equal to 1 in the interior of the grid, a scheme in
conservation form will conserve this accurate approximate except at boundary regions. In

what follows, we will ignore all boundary terms except those arising from the internal
interface.

We can thus write
Judc=3h w;u; + O(hY), (3.1)
J
and define
S"=3h w; uf. 3.2
J
To exactly conserve § at cach step, we have
Sl = hz wlu}
J
At
=h3 wy(uf + & (805u141)— 8(y-1,1) + (1§ + ArQuf)woh ,
J*#0
where for case of notation we assume a two point flux function g. Clearly s1=4g0it

i 8wt 1) (Wis1—w))+wo(g —g-)

Qug = == - (3.3)

where we use wy; = 1 for l/lzv. Note that this approximation can have a big stencil,
even though the formulas on either side are only three point formulas. For v = 1 or
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v = 2, i.e., using the rectangle or trapezoid rules, these formulas have clear finite
volume interpretations, but for v>2 this is not the case. To show that any of these
approximations give a weak solution if they converge, we write

2(x.x+h)—g(x—h,x)

vn+1_vn _ j#O
At |QovB j=0’ G4

Q as defined in (3.3). Multiply each side by ¢ and the weights w;, and sum over all
grid points,

_v'.'+1_vn g(v;vi+1)—8(vi-1,v3)
i j#0

Applying summation by parts to the right hand side sum gives
8(vy:vj+1)—8(vs-1,v))
go = Al - J=17) bIwh
J

U|228(V1—1,Vj)(¢}'—1wj-1"¢;"'Wj) — g(vo,v1)diw,

= 3 8(-1,v)(d]-1—-d]) — g(ve,v1)diw,

lfl=v+1
- U$08(V1—1»V1)(¢}'—1W1—1—¢fwj).

The first sum is already an O(h) approximation to the integral. Since ¢ is smooth, we
can expand ¢; in the remaining two terms around ¢, also with an error O(h). By
definition of Qgvg, all the remaining terms multiplying ¢ disappear, to terms of O(h),
and we have

Proposition 3.1: Any consistent approximation to the integral determines an inierface
equation that gives a weak solution 1o the pde, {f the approximations converge as h -> 0 .
We will use this to derive approximations in more complicated geometries by exactly
conserving some S, rather than secking a finite volume interpretation.

In general, it is difficult to say anything about the order of accuracy of the interface
approximations so derived in the more common cases where v=1 or 2. For higher order
integration approximations, however, we have the following.

Let

50 =10+ o(h) %))
where 10 = Iuo dx. The conservation law (1.1) exactly conserves j'u dx, so
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r=n
By design, the discrete approximation is conserved,
50=s!
and so
st=1+ o). (3.8)
Looking more closely at (3.8),
st = §hwju} (3.9)

= 3 hw(u(jh,Af) + O(FP* D)) + hwo(u(0,A1) + O(R*Y)),
J*0

where we assume the numerical scheme on either side of the interface has order of
accuracy p, (hence the local truncation error in the first step is of order p+1), and the
interface approximation has unknown order of accuracy €. Continuing, we have

S' = Thwi(u(jh,Af) + O(h**Y) + wo O(h*?). (3.10)
i

Equation (3.10) follows since the error term O(h*1) in the summation is multiplied by
h, but summed over 1/h grid points.

The sum remaining in (3.10) is the same integration rule applied to the true solution
u at the first time step, and so

S =1 + o) + O(W*Y) + weO(he*2). (3.11)

Therefore, by (3.8) the last two terms in (3.11) must cancel up to terms of order AV,
Thus for v2p+1, e=p—1, showing

Proposition 3.2: The interface approximation is not less than one order of accuracy less than
the accuracy of the scheme liself, for an integration rule with order of accuracy vZp+1.

Unfortunately, for v=<p, this argument only shows that e=v—2. For example, if
v=2 for the trapezoid rule, and p=2 for many numerical methods, we only have €=0.
In practise however, we have always obtained €=1, or in general € = min(p—1,v—1)
for vsSp as well. If this weren'’t true, the step where u} = u(jh,nAt) + O(h") would
not be true, since the global order of accuracy of the solution would drop to €+1, or one
more than the order of accuracy of the boundary formula ( see Gustafsson, [1975]).



4 Overlapping Grids in One Dimension

In this section we apply the previous technique to derive interface conditions for a
one dimensional model problem where two grids overlap, and do not share a common grid
line. The configuration is shown in figure 4.1. Notice that we have switched to using
cell centered rather than grid point centered variables in this section.

]

-
4

Figure 4.1 Overlapping Grids in One Dimension

Interface conditions are needed for ¥y and vo. Unfortunately, the simplest procedure
of interpolating for uJ*! at the new time level from the interior integration of v, and vice
versa, is not conservative in any way.

Again, we start by defining a discrete approximation to the integral of a function on
the entire domain. Outside of the overlap region, the integration rule we use will be the
second order accurate midpoint rule. In the region of overlap both grids will contribute
equally to the approximation of the integral. In particular, the cell around u_3 will

d
contribute (h,—d;) u_3 to the part of the integral without overlapping, and il u-3to

the overlapped region. - Thus, :
diu_3 + h, % u;
S=h, D w+ (h—d)u_z+ 5 f=-2 @.1)
j=-4
ihvvj + dyvy
+ [ £2 3 + (h,—d)vy + T hyy,.

j=5
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This is still a second order accurate integration rule, since the approximation drops to first
order at only two cells.

The point of figure 4.1, and the approximation 4.1, is that we are not combining the
grids into one global grid, as is indicated in figure 4.2 for example. This would leave a
tiny cell in the interior of the grid where special formulas would be needed to avaid
instability from exceeding the CFL condition. (We say more about this possibility later)
The point of figure 4.1 is that two calculations on regular grids will be done

independently, one on each grid, and extra work will be done only at the boundary of
each grid.

L.

Figure 4.2 Merging Overlapping Grids Into One Global Grid.

Using (4.1), we calculate the discrete flux change

_ d
SlAtso - g(u-3,u-2)"Ehl;(g(“-s,“—z)"g(“—b“*)) “.2)

h,
+ 3-8lumsud) + gluru)) + Quo + Rvg

+ 3800+ 8039)) = FEGOvI-805r) - 80302,

where Quq is defined by uf*! = uj + AtQuq, and similarly for Rvg. As before, the
fluxes that remain are from the neighboring cells where the weights w; in the integration
rule change.

1_

For conservation, we set A 0, and divide the fluxes in (4.2) according to




-17-

which interface they came from. This gives the interface approximations

d d
f g(u,vs)—(l—f) g(v3,v4) — 8(—1,40)
QuO = h (4'3)
d d
gvovy) = 5 8u-pu_)=(1-3) glu-3u-3)
RVO = “ hy -

Thus, the missing flux at the left end of the cell for v is linearly interpolated from the
fluxes on the other grid, and vice versa. This gives a first order accurate formula for ug
and vg. Notice that the interior boundaries are not treated as inflow or outflow
boundaries, and that the formulas are independent of the direction of the characteristics at

the interface. This information will appear in the definition of the numerical flux function
g itself.

The linear stability of the interpolation formulas for overlapping giids in 1D was
proved by Starius [1980] using the Lax Wendroff scheme on both grids, and by Reyna
[1982] and Berger [1983] for the leapfrog scheme. (If the equation is linear, then
interpolation of the fluxes is equivalent to interpolation for the solution itself.) We point
out that if the two grids meet at a common grid point without overlapping, then for
certain ratios of the mesh spacing (h, = h,,k, = 2h,), the leapfrog schemc is unstable.

Since linear interpolation gives a first order accurate interface approximation, it is
reasonable to wonder if higher order interpolation of the fluxes would yield a more
accurate approximation. For example, suppose we define Rv( by cubic interpolation, and
simplify notation by assuming the left end of the v grid lies exactly in the middle of the
cell for u_s,(i.e. dy = h/2). Then

—g(u_u—1) + 9g(k_3,u_3) + 9g(u_4,u_3) — g(u_s,u_g) .

RVO = 16
This corresponds to conserving an approximation
h, h =2
§= 2—2-\?] + 2 h,,uj + 2 —-zu-uj + 2 h,wjuj,
Jj=0 j=-5 j=-1 J=—4
where w_y = %—i—, wo3 = 32%, and w_4 = %g— However, it is unlikely that this

particular approximation is stable, since the interpolation coefficients are not positive.

Before moving on to the 2D case, we raise one other possibility that we have only
considered in 1D. This idea is based on using the global grid of figure 4.2, and the large
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time step methods of LeVeque [1982]. The problem with the grid in figure 4.2 is that the
tiny cell associated with the value u_3 will force a reduction in the time step to maintain
stability, if no modification of the difference scheme is made. In the large time step
algorithm of LeVeque, instead of calculating fluxes at the cell boundary, and then
differencing the fluxes to update the cell value, the jump in the solution at the cell
boundary is propagated, in the locally correct direction, and added to the existing value to
get the solution at the next time step. This is what Roe calls increment form. With a CFL
condition > 1, the differences can propagate several cells away, and are not limited to
onc or the other of the cells immediately adjacent to the boundary. For example, in
figure 4.2, consider the equation u, + au, = 0, with a<0. The jump vi — v§ is
propagated completely to the left, with a speed of propagation a for time At, landing
completely in the cell associated with v,. The total amount of v, at the new time is

hv3*! = b3 + Ata(vi-vY), (4.9)

which is just upwind differencing. For a nonlinear equation, ¥, + f(u), = 0, (4.4) is
replaced by

V3—sz

V3=V

hva* = b3 + At[ ] (vi-v9). (4.5)

Now consider the smaller cell for u_j3 in figure 4.2. The jump (vo—u-3) can
propagate completely through u_3's cell, and partially into u_4. The distance that the

f -
jump reaches into the cell of u_, is ( u )At h_ 3, giving the difference equations
([, ~fu_
u’i":;l = uly + \v:_ u_a h_ (vo— u-3)

'fll-g fu_4 [[V — M-
wiil =, + o u_4]——(u_3 u_g) + - 0 8-3

Total conservation follows from the definition of the algorithm.
We have not yet considered the generalization of this algorithm to 2D and to rotated
grids, where the direction of propagation of a jump is not clearly defined. A algorithm

related to this, called flux redistribution, has been proposed by Chern and Colella {1984]
in connection with a front tracking scheme.



.19 -

5 Overlapping Grids in Two Dimensions

In this section we formulatc a general algorithm to give conservative boundary
equations for meshes which overlap in an arbitrary fashion in two dimensions. We start by
first considering the very special case of 2 grids which are rotated by w/4 with respect to
cach other, and where the grid lines of one go through the corners of the other, as in
figure 5.1. We will quickly go through several more complicated pictures to derive the
more general algorithm. However, it is in the simpler cases that the physical
interpretation of the results is clear.

renaining"g;\\

flyxes

=

/

Figure 5.1 Two grids rotated by /4 with respect to each other.

As before, boundary conditions are necded only for the rotated grid across the line
£ = 0. We will assume the grids overlap by as many cells as necessary, which is typically
2 or 3, depending on the relative mesh sizes of the two grids. On the vertical grid, a time
step can proceed completely ignoring the rotated grid, and ignoring boundary conditions
for the vertical grid. Extra work will be done only at boundaries, and not in the interior
of a grid. Otherwise, it would lead to complicated data structures, and a loss of
vectorization. By keeping the interior computations scparate, they can also be done in
parallel.

We define the discrete conserved quantity S using the solution on the vertical grid
where it stands alone, and both grids with a weight of 1/2 where they overlap. The
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2

diagonal cclls in the vertical grid which intersect the boundary will have a weight hT
2

from the non-overlapping triangular part of the cell, and -';— from the overlap region.

Being imprecise with notation to avoid a mess, we have

2 2 VoR)2
S = 2 hzu,j + 2 %ua + 2 %—-uv + 2 'LZW.LVU. (S.l)
nonoverlapped diagonal overlapped rolated
region region grid
The solution on the vertical grid is denoted by u, and on the rotated grid by v. We seck
a definition for the missing flux f) in the integration of vy,
vi;

=vf; + Zé:"‘[ﬁ(Vu,VlJﬂ)"é(Vu—1,V1,/)] + %V(VlJ.VzJ)‘ﬁ]-

1_
In calculating SAtSO sthe terms that remain are from neighboring cells in the

vertical grid where the integration weights in (5.1) change. These fluxes are marked with
dark lines in figure 5.1. Clearly, by defining

fin _ 1 1
Kﬁ_ = h [f:‘— 1/'2,i+fl'+1/‘2,i] T [8i,i—1f2+81‘,i+1/2]
the fluxes balance. Since A§ = V2hin figure 5.1, we get the formula

fi = 27150.'—1/2,1'+.ﬁ+m,i) - 271;(8;',:—1/2+81,1+1/2)- (5.3)

On the vertical grid the equation being solved is u, + f(u), + g(u), = 0. Ona
grid rotated by %, using the coordinates illustrated in figure 5.1, the equation becomes
u + fe + g =0, (5.4)

where

"

f = fcosB + g sin®
& = f cos0 — g siné.

Fortheeasc0=—1r/4,theﬁuxfunctionf=-vli-(f—g),andso(5.3)islinur

interpolation for the correct fluxes in the new coordinate system, and so is second order
accurate if the method on the vertical grid is second order.

Two more observations complete this case before considering the more general

situation. First, consider what happens if the grid spacing on the rotated grid is halved.
The fluxes that don’t cancel on the vertical grid are the same, whereas two interface
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equations are needed on the rotated grid. Everything balances by assigning
2 1
fi = Wi(fi—lfz,i - 8ii-17)
2 1
fiv1n = W;(fsﬂrz,: = 8ii+172)>

The fluxes are separated depending on whether they lic above or below the line
n = j+12.

u. .
w=1 ii

NN

AN/

Figure 8.2 Two grids rotated by n/4 with irregular averlap.

The second generalization is shown in figure 5.2. The grids are still rotated by /4,
but the grid lines of one do not exactly pass through the corners of the other grid. The
weights used in the integration rule for the u grid are marked in figure 5.2, where the
averlapping cell arcas are denoted by p and g as indicated. The vertical grid fluxes that
determine the flux into the rotated grid are darkened in figure 5.2. The resulting
interface equations are

. V
fi= '53[4 UVi-12,—8ii+121 + A—P—q) [fi+12,~ 8i1i~-12) (5.5)

+ plfiv12,i-1—8i+1,-172]
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Again, all the fluxes from the vertical grid lying between grid lines j and j+1 are used to
define the missing flux. This 6 point stencil is not equivalent to a finite volume formula in
a natural way.

Leaping ahead to the general case, consider figure S.3. The interface equation for f'}
is a linear combination of the neighboring fluxes,

fing=afu+Bfu+yfn+8fn+egy, (5.6)

with coefficients determined by the amount of overlap and the integration rule. For
example, to find the coefficient vy for the contribution of f;,, first we need to know the
differing weights of the adjacent cells in the integration rule. The cell to the left has
weight wg, = 1. To the right the weight is determined by the amount of overlap, call it

P. so the weight is wy 5 = 1—121. The flux contribution is for f; 5 is then wg 2—w; 5 or

%intotal. Smmofthisﬂuxisalsouscdtodctcnnincfm_j.,.l.Thcpmpon.iongivento

f is determined by the ratio <, where I is the length subtended by extending the

/TR,
/ /\Z\\
[
N
1A

w=1
| |

i
|

f

5
\

Figure 5.3 General Overlapping Grids in 2D.
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This interface procedure can be implemented for general 2D grids in a practical way
with the following steps. When the initial gridding is done, some preprocessing is needed
to determine

(a) the area of intersection for the cells in the main grid, and

(b) the intersection of the normal coordinate lines of the new grid with all cell sides
of the main grid. If there is no such intersection, all of the flux on a side is used.

Step (a) determines the weight of the cells in the integration rule, and step (b) determines
the amount of the main grid’s flux to be apportioned to the j* boundary cell. Since two
quadrilateral grids can intersect in a many sided polygon, depending on the mesh ratios of
the grids, these steps can be complicated. In step (a), it is possible that the conservative
interpolation procedure of Dukowicz [1984] for rezoning lagrangian calculations will be
helpful in calculating overlap areas. In any case, this preprocessing is only done once. The
coefficients for the linear combinations in the boundary equations are saved in a data
structure corresponding to the boundary of the overlapping grid. During the time
integration, we repeat step

(c) when the fluxes on the main grid are calculated, the appropriate amount of each
flux is transmitted to the new grid.

This procedure does involve extra storage overhead proportional to the length of the grid

boundary. We point out that it applies even if an operator split scheme is used, so that not
all fluxes are available at the same time.

Acknowledgments

I am grateful to Jonathan Goodman for valuable discussions during the course of this
work.

References

[1] E. Atta, Component-Adaptive Grid Interfacing, AIAA Paper No. 81-0382. Presented
at the AIAA 19** Acrospace Sciences Meeting, 1981.

[2) J. A. Benek, J. L. Steger and F. C. Dougherty, A Flexible Grid Embedding
Technique with Application to the Euler Equations, AIAA Paper No. 83-1944.
Presented at the 6" Computational Fluid Dynamics Conference, Danvers, Mass.
July, 1983.

{3] M. Berger, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,
PhD dissertation, Computer Science Dept., Stanford University, 1982.



.24 .

[4) M. Berger, Stability of Interfaces with Mesh Refinement, ICASE Report No. 83-42,
August, 1983. To appear in Math. Comp.

[S] M. Berger and A. Jameson, Automatic Adaptive Grid Refinement for the Euler

Equations, MAE Report No. 1633, Princeton University, October, 1983. Also as
NYU Report No. DOE/ER/03077-202. To appear in AIAA J.

[6] M. Berger and J. Oliger, Adaptive Mesh Refinemens for Hyperbolic Partial Differential
Equations, J. Comp. Phys. 53 (1984), 484-512.

[7]1 . Bolstad, An Adaptive Finite Difference Method for Hyperbolic Systems in One Space
Dimension, PhD dissertation, Computer Science Dept., Stanford Universty, 1982.

[8] C. Boppe, Calculation of Transonic Wing Flows by Grid Embedding, AIAA Paper No.
77-207.

[91 A. Brandt, Guide to Multigrid Development, Lecture Notes in Mathematics 960,
Springer-Verlag, 1981.

[10] I. Chern and P. Collela, A Conservative Front-Tracking Algorithm for Hyperbolic
Conservation Laws. In Preparation.

[11] J. Dukowicz, Conservative Rezoning (Remapping) for General Quadrilateral Meshes,
J. Comp. Phys. 54 (1984), 411424,

[12) W. Gropp, A Test of Moving Mesh Refinement for 2D Scalar Hyperbolic Problems,
SIAM J. Sci. and Stat. Comp. 1 (1980), 191-197.

[13] B. Gustafsson, The Convergence Rate for Difference Approximations to General Mixed
Initial Value Problems, Math. Comp. 29 (1975), 649-686.

[14] B. Gustafsson, H.-O. Kreiss, and A. Sundstrbm, Stability Theory of Difference
Approximations for Initial Boundary Value Problems. II, Math. Comp. 26 (1972),
649-686.

[15] K. Hessenius and T. Pulliam, A Zonal Approach to Solution of the Euler Equations,
AJAA Paper No. 820969, St. Louis, Missouri, June 1982.

[16] P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of
Shock Waves, SIAM, 1972.

[17] P. Lax and B. Wendroff, Systems of Conservation Laws, Comm. Pure and Appl.
Math 13 (1960), 217-237.

[18] R. LeVeque, Large Time Step Shock Capturing Techniques for Scalar Conservation
Laws, SIAM J. Numer. Anal.18 (1922), 1091-1109.



.25 .

[19] S. McCormick, The Fast Adaptive Composite (FAC) Method for Elliptic Equations,
Submitted to Math. Comp.

[20) M. Mock and P. Lax, The Computation of Discontinuous Solutions of Linear
Hyperbolic Equations, Comm. Pure and Appl. Math 21 (1978), 423-430.

[21] S. Osher and R. Sanders, Numerical Approximations to Noniinear Conservation Laws
with Locally Varying Time and Space Grids. Preprint.

[22] M. Rai, A Conservative Treatment of Zonal Boundaries for Euler Equations
Calculations, AIAA Paper No. 84-0164.

[23] L. Reyna, On Composite Meshes, Ph. D. dissertation, California Institute of
Technology, 1982.

[24]) G. Starius, On Composite Mesh Difference Schemes for Hyperbolic Differential
Equaiions, Numer. Math. 35 (1980), 241-255.

[25] R. Warming and R. Beam, Upwind Second-Order Difference Schemes and
Applications in Aerodynamic Flows, AIAA J. 14 (1976), 1241-1249.






